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Multicellular organisms rely on spatial signaling among cells to
drive their organization, development, and response to stim-
uli. Several models have been proposed to capture the behav-
ior of spatial signaling in multicellular systems, but existing
approaches fail to capture both the autonomous behavior of
single cells and the interactions of a cell with its neighbors
simultaneously. We propose a spatiotemporal model of dynamic
cell signaling based on Hawkes processes—self-exciting point
processes—that model the signaling processes within a cell and
spatial couplings between cells. With this cellular point process
(CPP), we capture both the single-cell pathway activation rate
and the magnitude and duration of signaling between cells rel-
ative to their spatial location. Furthermore, our model captures
tissues composed of heterogeneous cell types with different
bursting rates and signaling behaviors across multiple signal-
ing proteins. We apply our model to epithelial cell systems that
exhibit a range of autonomous and spatial signaling behaviors
basally and under pharmacological exposure. Our model identifies
known drug-induced signaling deficits, characterizes signaling
changes across a wound front, and generalizes to multichannel
observations.

point process | Hawkes process | keratinocytes | kinase networks |
cell signaling

Complex life is largely characterized by multicellular struc-
tures (1). Classical multicellular processes such as the pat-

terning of cells within a tissue and the precise spatial arrange-
ment of tissues within an organ are the product of different gene
expression programs organized carefully over space and time (2).
These different programs emerge from both intracellular path-
ways governing gene and protein expression on a single-cell level
and the intercellular signaling that allows cells near one another
to interact. Understanding how these networks are regulated as
well as the factors leading to their dysfunction is a topic of active
research (3).

Intracellular signaling is a term used to describe information-
carrying modifications of proteins in a single cell. One example
of this is the extracellular signal-regulated kinase (Erk), which is
activated by phosphorylation in response to changes in the cell’s
environment. This pathway is also called the Ras/Erk signaling
pathway since signaling originates at the membrane protein Ras
(rat sarcoma). Signaling proteins can then operate on down-
stream effectors such as transcription factors that regulate gene
expression.

Intercellular signaling specifically involves signaling as a result
of an input delivered by a neighboring cell. Often, this involves
the release of ligands from one cell that bind to receptors on a
neighboring cell and cause a change in behavior of the neigh-
bor cell. Both intra- and intercellular signaling may make use of
the same signaling protein. For example, Erk can be activated by
the presence of growth factors in the surrounding media or upon
cleavage and binding of growth factors from an adjacent cell.

Nearly every cell in a physiological context is simultaneously
processing information about its own state (intracellular) as
well as the states of cells around it (intercellular). Therefore,
these two modes of communication may interact in complex and
unexpected ways, especially when they make use of the same sig-
naling proteins. Decoupling their relative effects on cell state
is challenging and often requires invasive perturbations such
as pharmacological inhibitors that may have unforeseen conse-
quences on cell or tissue health. Nevertheless, estimating the
relative contributions of intrinsic cellular behavior and extrinsic
spatial signaling is an important goal for understanding multicel-
lular systems. This is particularly true with the advent of cellular
imaging modalities that allow us to visualize signaling behaviors
in single cells, heterogeneous multicellular ensembles, and even
in vivo tissue (4).

Here, we focus on a case of one signaling pathway being
used to convey information about both intra- and intercellular
cell states. The mammalian Ras/Erk pathway has been found to
display transient “pulses” consisting of pathway activation fol-
lowed by rapid deactivation in a range of epithelial cell types
(5, 6). These pulses can be modulated by environmental con-
text such as the presence of certain growth factors, as well as
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physical perturbations such as a wound (4). Moreover, cells have
been found to “transmit” pulses of activity from cell to cell, and
to pulse autonomously, suggesting that the Ras/Erk pathway is
involved in both intra- and intercellular signaling (5, 6). Since
epithelial tissues largely derive their functionality from intercel-
lular communication and multicellular behavior, which regulates
their differentiation and growth, it is likely that Ras/Erk pulses in
epithelia are not simply an epiphenomenon but rather function-
ally linked to tissue-level dynamics, for instance, to the ability
of a cell to leave its stem cell niche and undergo subsequent
differentiation (7).

Models have been proposed that approximate spatial signal-
ing patterns to simulate signaling behaviors of cells. Dynamical
models based on diffusion processes describe the behavior of
biological systems spatially by approximating the tissue as a con-
tinuum (8, 9). Cellular automata models equip each member of
a discrete set of agents with a primitive set of directives and then
observe how the resulting system of agents evolves across time
(10). To our knowledge, inferring signaling parameters for these
models from observations is rare, limiting their applicability to
observational data from experimental systems.

In this paper, we introduce a statistical approach to mod-
eling the pulsing times of each cell in a neighborhood as a
function of their spatial organization. We treat collections of
signaling pulses as realizations of a point process—a stochas-
tic model of events over time or space (11). Self-exciting point
processes, known as Hawkes processes, have been successfully
used to model social media interactions (12, 13), financial time
series (14, 15), neuron spike trains (16), and events along DNA
sequences (17, 18), as well as a range of other time-varying or
space-varying processes (19, 20). These processes allow us to
explicitly tease apart the rate of cell pulsing and the influence
of a pulsing event at one cell on the probability of a pulsing
event in that same cell and in neighboring cells as a func-
tion of distance. Previous work has mostly focused on learning
the connectivity of a network given data; we are interested in
learning the strength of connections based on a given spatial
network.

Our model—the cellular point process (CPP)—quantitatively
estimates the base rate of pulsing, the rate of intracellular signal-
ing, and the strength of intercellular signaling using experimental
data. The CPP is an adaptation of the original Hawkes process
that limits effective signaling to cells that are within a cutoff
distance from one another. The CPP model parameters are esti-
mated by maximum-likelihood methods using data that capture
pulse times and spatial coordinates for each cell annotated in an
imaging experiment. These types of experiments are becoming
increasingly tractable in many laboratory environments (6). We
demonstrate a correlation between the duration (i.e., number of
signaling events) and scale (i.e., number of cells) quantified in an
experiment and the accuracy of the intra- and intercellular sig-
naling rates inferred by the CPP. This suggests that our model
can be applied to a wide range of imaging data to deconvolve
pulsing rates due to intra- and intercellular signaling patterns.

We validate the CPP’s ability to estimate the relative contri-
butions of intra- and intercellular signaling on pulsing rates in
simulated data where these contributions are known. We then
analyze mouse epidermal stem cells, or keratinocytes, which dis-
play naturally occurring Ras/Erk dynamics in and ex vivo (4, 6).
We quantify the decrease in spatial signaling when these cells
are treated with a known cell-signaling inhibitor compared to
untreated cells. Then, we examine and disentangle the inter- and
intracellular contributions of a variety of pharmacological kinase
inhibitors on Erk bursting dynamics in keratinocytes. Next, we
study the contributions of inter- and intracellular signaling on
the response of Madin-Darby canine kidney (MDCK) cells to an
acute wounding event, finding that both factors change as a func-
tion of distance away from the wound. Finally, we demonstrate

that the CPP model estimates how multiple reporter channels
interact with each other across cells.

Results
The CPP model treats each peak in a cell as an event in a self-
exciting point process, where events in one cell influence the
likelihood of an event occurring in the future in that cell and in
neighboring cells (Fig. 1). The CPP model estimates five param-
eters from a list of events in different cells with known spatial
organization:

• µ, the baseline, autonomous frequency of events;
• a , the strength of signal each event emits to the cell

neighborhood (higher a indicates stronger signaling effects);
• aself , the strength of signal each event emits to self-excite the

cell of the event (higher aself indicates stronger intracellular
effects);

• b, the variance of a log-normal kernel that defines the effect of
any event on the conditional intensity of its neighbors (higher
b corresponds to larger variance in time between events); and

• bself , the variance of a log-normal kernel that defines the effect
of any event on the conditional intensity of its own cell.

We first validate the CPP model’s ability to identify spatial
and autonomous signaling on simulated data where these fac-
tors are known a priori. We then turn to an experimentally
tractable system of mouse epidermal stem cells, or keratinocytes,
that display naturally occurring Ras/Erk dynamics in and ex vivo
(4, 6). We estimate the natural intercellular and intracellular
signaling effects in these cells and validate the CPP model by
quantifying decreases in spatial signaling when cells are treated
with a known signaling inhibitor. Next, we estimate the spa-
tial and autonomous signaling effects of a variety of drugs on
keratinocytes from a prior assay (6). We also quantify the spa-
tial and autonomous signaling effects of three drugs on cell
behavior during wound healing stratified by distance from the
wound (21). Finally, we demonstrate that the model can estimate
parameters from more complex histories with multiple channels
per cell using data with two fluorescence channels from mouse
keratinocytes.

Spatial Point Processes Estimate Parameters from Simulated Data.
We first verify that the model accurately estimates parameters
from simulated data. Observations were simulated from the gen-
erative model across a range of observed cells and total number
of observed events. We find that the CPP is able to accurately
estimate the parameters of the generative model with low nor-
malized mean square error (NMSE) (Table 1 and Fig. 2; see
Materials and Methods for equations). Control estimates of the
parameters, described in Materials and Methods, all perform
worse than our estimates in NMSE.

The accuracy of the parameter estimates varies over the num-
ber of cells and number of events observed. The estimates
for the parameters degrade as the number of peaks decreases
(Fig. 2 B, E, H, K, and N). Estimation of parameters a and b
improves substantially with more cells (Fig. 2 K and N). The con-
fidence intervals are mainly a function of the number of peaks
observed, particularly for a and b (Fig. 2 L and O). The accu-
racy of estimates also depends on the true parameter values. The
autonomous parameter µ and intercellular signaling duration
parameter b tend to be underestimated when their true value
is relatively large (Fig. 2 A and M). Estimation for intracellular
signaling duration parameters aself and bself are less accurate than
the other parameters (see Table 3), so we ascribe less significance
to this estimate in later sections. Nevertheless, the small errors of
the parameter estimates demonstrate that the CPP model accu-
rately deconvolves signaling parameters from experimental data.
The data that we collected have around 150 cells and 1,000 peaks,
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C

Fig. 1. (A) Three cells demonstrating autonomous pulsing µ, self-signaling effects parameterized by aself , bself , and cell-proximity specific effects within
some radius ε, with magnitude of those effects parameterized by a, b. (B) Effect of parameters in A on signaling pulses in cells. (C) Example conditional
intensity (λ(t)) plots for four pulses across three cells, where cell 1’s initial pulse increases the expected number of pulses for cell 3 and itself through spatial
coupling. High intensity means more expected pulses.

a region where CPP’s estimates for each parameter are close to
the true values in simulations.

Spatial Point Processes Capture the Effect of Pharmacological Treat-
ments on Keratinocyte Behavior. Next, we evaluate the CPP
model’s ability to identify changes in signaling behavior across
pharmacological treatments of cells. Mouse basal keratinocytes
are epidermal stem cells that form monolayers in and ex vivo.
Studies have shown dynamic signaling behavior in the Ras/Erk
pathway of these cells linked to spatial patterning (5). TNF-
α protease inhibitor (TAPI-1) is a matrix metalloproteinase
inhibitor (22) that prevents spatial signaling and Erk activation
between cells (5). We used a KTR fluorescent marker (23) to
image Erk concentration over time across sheets of keratinocyte
cells dosed with 5, 10, and 20 µM of TAPI-1, as well as a control
group of untreated cells.

Table 1. NMSE and normalized standard deviation of NMSE
(NSTD) of CPP-estimated parameters and a control model to
ground-truth parameters from simulated data

Parameter NMSE (NSTD) Control NSME (NSTD)

µ 0.09 (0.30) 1,226.51 (33.00)
a 0.22 (0.34) 79.87 (8.33)
aself 0.65 (0.67) 19,914.99 (181.23)
b 0.05 (0.15) 0.08 (0.28)
bself 0.35 (0.23) 0.49 (0.27)

Our CPP model is able to quantitatively capture the change
in keratinocyte signaling behavior as a function of TAPI-1 con-
centration (Fig. 3). We find that the estimated autonomous
µ̂ parameter and strength of spatial signaling â decrease with
increased TAPI-1 concentration (Table 2). We also observe that
the self-exciting parameter aself does decrease but only by about
20%. We would not expect TAPI-1 to change the self-excitation
signaling of keratinocytes. The kernel parameters b̂ and b̂self
increase with increased TAPI-1 concentration, representing an
increase in the time between peaks (Table 2). We note that
the values for b̂ and b̂self are the same; this is due to the infer-
ence methods. We estimate bself as a multiplier of b, initialized
at one. The nearly identical values indicate that the gradient
updates for the bself multiplier were small given these data.
This finding highlights an important advantage of our model.
In contrast to simpler approaches, such as the Ising model,
the CPP allows for calculating an explicit term for memory, or
self-excitation—i.e., the propensity for a cell to change state
as a function of state changes that have occurred in its recent
history.

Pairwise nonparametric Mann–Whitney U tests between
TAPI-1 concentrations show substantial decreases in µ̂ between
0 and 5 µM (U =0, P ≤ 0.01) and 10 and 20 µM (U =0,
P ≤ 0.005), and also show decreases in a between 0 and 5 µM
(U =5, P ≤ 0.01; Fig. 3 A and B). We also find a decrease
in signaling associated with an increase in TAPI-1 dose using
the likelihoods of the model. To do this, we compare the like-
lihood of the estimated model to a model where all pulses
are due to autonomous signaling parameter µ; in other words,
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Fig. 2. (Left) Scatter plots of true versus estimated (A) µ, (D) aself , (G) bself , (J) a, and (M) b. Dot color represents the number of cells and dot size represents
the number of events for that simulation. (Middle) Heatmap of mean squared error (MSE) of estimated (B) µ, (E) aself , (H) bself , (K) a, and (N) b for different
simulation parameters for number of cells and number of peaks. (Right) Heatmap of confidence intervals (CI) of estimated (C) µ, (F) aself , (I) bself , (L) a, and
(O) b for different simulation parameters for number of cells and number of peaks.

a =0. The estimated µ̂ is the ratio of number of peaks
number of cells×total time . When

we take the difference of the log-likelihoods, we observe that
the difference between CPP and a control model decreases as
TAPI-1 concentration increases (Fig. 3E), including a substan-
tial decrease between 0 and 5 µM (U =3,P ≤ 0.01), although
the difference always remains positive. This means that the
CPP model is better at explaining the data relative to a fully
autonomous model at low TAPI-1 concentrations. Alternatively,
we calculate the contribution of the spatial, self-exciting, and
autonomous influences at each peak. We observe that the aver-
age percentage contribution from spatial signaling across peaks
decreases as TAPI-1 concentration increases (Fig. 3D). The
ability of the CPP model to quantify this biological inhibition

demonstrates its ability to analyze spatial signaling in complex
systems.

We extend this analysis to evaluate the effects of a variety
of drugs on spatial signaling in keratinocytes. Recent work (6)
sought to quantify the effects of over 400 receptor tyrosine kinase
inhibitors (RTKi) on endogenous keratinocyte Ras/Erk dynam-
ics. We fitted our CPP model on time series from treated cells
from this study, with experiments across 432 drugs and 18 con-
trol dimethylsulfoxide (DMSO) samples, to determine whether
the autonomous or spatial components, or both, are substantially
affected by targeted RTK inhibition.

The original analysis of these data (6) divided drugs into
three categories, which also took into account the “set point”
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Fig. 3. (A and B) Estimated parameters µ and a for keratinocytes as a function of TAPI-1 concentration. Black points represent individual wells. Schematic
in A, Inset shows the effect of TAPI-1 on intercellular signaling. (C) Scatter plot of average estimates of µ versus a for each TAPI-1 concentration. (D) Average
contribution of spatial signaling to pulses in each TAPI-1 concentration. (E) Difference in unnormalized log-likelihood of spatial model versus a spatial-free
control model for all TAPI-1 concentrations and replicates. (F) Class 1, 2, and 3 drugs (6) on a plot of µ versus a. Statistical significance is calculated using a
Mann–Whitney U test, with *P< 0.01 and **P< 0.005.

or baseline level of Erk activity. Class 1 drugs reduced Erk
activity to extremely low levels, corresponding to µ close to
0. Class 2 drugs, on the other hand, increased Erk activity to
a high constant level. Since a pulsing event is defined as a
local maximum in the Erk activity trace, these cells demon-
strated few pulsing events since the pathway could likely not
be activated beyond this high level. Since our model does not
capture mean Erk activity, but rather the events where activ-
ity changes, we expect these drugs to have lower autonomous
pulsing parameter µ in the CPP model. Finally, class 3 drugs
increased Erk activity over time by increasing the pulse frequency
(6), which corresponds to a higher estimated µ value in our
model.

The CPP model finds differences across these three classes and
in comparison to untreated DMSO controls (Fig. 3F). We find
that class 1 (µ̂=0.025 min−1) and 2 (µ̂=0.013 min−1) drugs
have lower mean autonomous activity µ̂ than DMSO controls
(µ̂=0.03 min−1), using a t test to compare classes to DMSO
(t statistic =− 21.7, P ≤ 2.2× 10−16 for class 1 drugs and t statis-
tic =− 5.63, P ≤ 5.7× 10−6 for class 2 drugs). Class 3 drugs have
higher autonomous activity µ̂ (µ̂=0.04 min−1, t statistic=3.69,
P ≤ 0.0006). While class 1 and 2 drugs have spatial signaling
parameter â in a close range (approximately 0.01 to 0.04min−1),
we find that class 3 drugs diverge between low signaling, â <
0.02min−1, and high signaling behavior (â > 0.04min−1). An
interesting example is Pazopanib (â =0.044min−1), a class

3 drug that increases signaling relative to DMSO (mean
â =0.013min−1) that is known to target the membrane proteins
such as RIPK1 and VEGFR (6, 24). Interactions with membrane
proteins would be expected to modulate intercellular signaling.
We note that the confidence intervals are large relative to the
parameter estimates. The average 95% confidence interval for
µ̂ is ±0.020 min−1 and the average 95% confidence interval is
±0.197 for âself min−1. Thus, these results should be interpreted
cautiously and replications are required for each treatment to
draw stronger conclusions.

While estimates for autonomous parameter µ̂ and signaling
strength parameter â both decrease as TAPI-1 dose concen-
tration increased, in the drug screen increasing µ̂ mostly corre-
sponds to decreasing â . The divergence in class 3 drugs, however,
indicates that both parameters are necessary to fully character-
ize the signaling system. One would expect that the addition of
TAPI-1 would decrease the pulsing of the high-â class 3 drugs
but would leave the pulsing in low-â class 3 drugs mostly unal-
tered. The estimation of these distinct signaling parameters adds
nuance to our understanding of the cell response to various phar-
macological agents beyond basic statistics such as frequency and
duration of pulses.

CPP Quantifies Trends in Cell Signaling in a Wound Healing Con-
text. MDCK cells move to close an artificially inflicted wound
in vitro while expressing a live cell reporter of Ras/Erk activity

Table 2. Mean estimated parameters and standard error of the mean (in parentheses) for each
TAPI-1 dose concentration

Concentration µ (10−2 min−1) a (10−2 min−1) aself (10−2min−1) b (10−2 min) bself (10−2 min)

No treatment 1.72 (0.12) 1.15 (0.20) 0.83 (0.10) 0.29 (0.17) 0.29 (0.17)
5 µM 1.27 (0.03) 0.67 (0.03) 0.78 (0.07) 0.66 (0.18) 0.66 (0.17)
10 µM 1.03 (0.02) 0.59 (0.04) 0.71 (0.03) 0.57 (0.20) 0.57 (0.20)
20 µM 1.02 (0.02) 0.61 (0.07) 0.68 (0.01) 0.69 (0.17) 0.69 (0.17)
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(21). Experiments were performed in the presence of DMSO
(control), TAPI-1, or Trametinib (MEK inhibitor). Notably, as
can be seen at the 6-h timepoint, ERK activity was high in the
cells closest to the wound (the wound front) in both DMSO
and TAPI-1 conditions, but this activity was abrogated in the
presence of pathway inhibition by Trametinib. On the other
hand, ERK activity was heterogeneous in the submarginal cells
behind the wound front in control conditions, but much lower in
the presence of TAPI-1 and similarly low in Trametinib condi-
tions. We analyzed these spatiotemporal data using TrackMate
to obtain pulse information and cell positions from the cell
images over time. We then fitted our CPP model with these data.
Cells were binned into their relative distance from the wound
edge; the total width of the cell sheet from the inner edge of
the field of view to the wound was split into 10 bins, and the
CPP model was fitted for each bin (Fig. 4 A–E). We note for
clarity that our kernel still implements the distance cutoff ε and
that the relative distance from the wound edge is a separate
parameter.

The estimated value of autonomous pulsing parameter µ̂
peaked next to the site of the wound in control (DMSO-treated)
cells (Fig. 4D). On the other hand, the addition of TAPI-1 pre-
wounding resulted in a much lower autonomous pulsing rate rel-
ative to DMSO in this region (Wilcoxon signed-rank statistic =
0, P ≤ 0.008; red curve, Fig. 4D). Trametinib, an Erk inhibitor,

decreased autonomous pulsing even further relative to DMSO,
as would be expected (Wilcoxon signed-rank statistic = 0, P ≤
0.008). The estimated value of intercellular signaling strength
parameter â also decreased from DMSO to TAPI-1 (Wilcoxon
signed-rank statistic = 2, P ≤ 0.023) and decreased further still
in Trametinib-treated cells (Wilcoxon signed-rank statistic = 0,
P ≤ 0.008; Fig. 4E). Taken together, these results suggest, in line
with previous work (21), that both cell-autonomous and cell-to-
cell signaling effects occur with specific spatial organization in
response to a wound and can be abrogated to different extents
through pharmacological inhibition. This suggests that both cell-
autonomous and cell-to-cell Ras/Erk signaling may be important
factors in allowing MDCK cells to close a wound. This may be
why TAPI-1–treated and Trametinib-treated cells fail to fully
heal a wound over the full 12-h time course (Fig. 4 B and C),
where the control wound is fully healed at the 12-h timepoint.

CPP Quantifies Signaling-to-Gene Relationships Using Multichannel
Learning. The Ras/Erk pathway is responsible for immediate
activation of a family of genes called immediate early genes
(IEGs; Fig. 5A). We leveraged a system that allowed us to
engineer mouse keratinocytes to express a destabilized green
fluorescent protein (dGFP) with a half-life of ∼1 h, under the
control of the minimal promoter of the IEG fibroblast osteogenic
sarcoma (Fos) (Fig. 5B). These cells were imaged for 24 h and

TAPI-1DMSO Trametinib
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Fig. 4. (A–C) Time course data of MDCK cells moving to heal an inflicted wound at 0, 6, and 12 h postwounding. Dark cells denote low Erk activity, while
light cells denote high Erk activity. A representative wound is marked by a dashed line in A, Top, and wound front cells/submarginal cells are marked by
white arrows at the 6-h timepoints in A–C, Middle. (D) x binning captures cells at different distances away from the site of a wound. µ is estimated for
bins at different distances away from the wound. (E) a estimates for spatial bins at different distances away from the wound. For both D and E, black lines
represent DMSO cells, the red lines represent TAPI-1–treated cells, and the blue lines represent Trametinib-treated cells.
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Fig. 5. (A) The Ras/Erk pathway results in the transcription of canonical immediate early genes. (B) TARGATT technology enables insertion of a Fos minimal
promoter (pFos) into a single site in the genome, allowing for quantitative monitoring of pFos activation. (C) KTR and dGFP readout can be measured in
the same cell. (D) CPP quantifies cross-channel directed signaling through aktr→ gfp and agfp→ ktr . (E) Pharmacological inputs modulate the strength of the
association between Ras/Erk signaling and Fos gene expression dynamics. Statistical significance was calculated using Student’s t test, with *P< 0.05 and
**P< 0.005.

analyzed using CPP. CPP allowed us to quantify the signaling
between channels, Erk and Fos, with no prior information that
Erk affects transcription of Fos. To measure this interchannel
signaling, we estimated the intercellular signaling parameters
aktr→ gfp and agfp→ ktr using the multivariate CPP model and
took the ratio of the two values for each field of cells imaged
(Fig. 5D). We were able to recapitulate the strong directed sig-
naling of Erk to Fos transcription, as seen by the ratios of 3
and 2 for cells in growth and starved media, respectively (Fig.
5E). On the other hand, testing several drugs from a previ-
ously published keratinocyte drug screen (6) showed a range
of signaling behaviors (Fig. 5E). Erk inhibition (UO126; Lapa-
tinib) showed similar signaling in the presence of Erk-activating
drugs GDC-0879 and SB590885, perhaps because the signaling
between pulses of Erk signaling and pulses of GFP accumulation
decreases when both are constantly on or constantly inhibited.
On the other hand, Tivozanib and Pazopanib, which increase
pulsing frequency µ (6), maintain a similar level of signaling and
gene expression to those of cells grown in standard or starved
conditions (Fig. 5E).

Discussion
In this paper, we present a spatiotemporal model, the CPP,
to capture pulsatile cell-signaling events based on self-exciting
Hawkes processes. Applying this model to processed cell-
imaging data across time, we estimate model parameters that
quantify the strength of spatial and autonomous signaling in a
multicellular system, even in the context of heterogeneous cell
types, multiple signaling channels, or environmental conditions.
We use these parameters to quantitatively compare systems, e.g.,
pre- and postexposure to pathway-targeting drugs. We validate
our model on simulated data and demonstrate its ability to cap-
ture known inhibition effects of TAPI-1 on spatial Erk coupling
in keratinocytes. We then use the CPP model to interrogate the
effects of different drug treatments on keratinocytes and are able

to replicate the known effects on expression of three classes of
drugs and extend knowledge of the effects of the drugs to cell
signaling. The estimation of intercellular signaling parameters
and autonomous pulsing parameters adds to our understanding
of keratinocyte drug response. Finally, we use the CPP model to
capture heterogeneous cell-signaling behaviors across distance
from the wound frontier in response to wound healing.

The CPP model leaves room for further development. Point
processes are known to be brittle models that have poor esti-
mates under model misspecification (25). Under conditions
where this kernel is inappropriate or the nature of spatial
interaction is different, modifications and extensions would be
necessary. Signaling mechanisms may have refractory periods,
the time after which the likelihood of an event is depressed,
leading to a different kernel with repressive properties. The
kernel and the relationship between distance and signaling
strength might be better modeled nonparametrically to account
for differences in cell size, shape, and imaging scales. Currently,
the model assumes that interactions are local and symmet-
ric. However, systems such as wound healing may demonstrate
global and directional behavior. The model of spatial interac-
tion could be modified to vary over the region. Alternatively,
the intensity of interaction could be a function of the vec-
tor distance between positions rather than a scalar distance.
For longer histories of observations, we would also be inter-
ested in allowing these parameters to vary over time, e.g., to
detect possible switch points between local and global signaling
regimes.

The probabilistic aspects of the model could also be expanded
to make the model fully Bayesian. Priors may be placed on the
parameters to learn a maximum a posteriori estimate or the pos-
terior distribution over parameters. Hierarchical models may be
developed to estimate smoothly varying model parameters across
the space instead of binning cells by distance to the wound.
Hierarchical structure could be used to learn shared parameters
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from multiple observations of the same condition such as repeats
of the DMSO controls. Regardless, self-exciting point processes,
and the CPP specifically, represent a powerful class of stochastic
models that can be used to accurately and robustly quantify the
spatial components of multicellular dynamics.

Materials and Methods
The CPP Model. Point processes are probabilistic models of events in some
mathematical space, generally used to model event occurrences across space
or time (or both) (19, 20, 26). A point process can be defined by the condi-
tional intensity function, λ(·), which represents the expected infinitesimal
rate at which events occur (27). We first describe a one-dimensional point
process that starts at t = 0. This point process produces N events over an
interval of time δt> 0. At any moment t> 0, there is a history of previous
events, Ht , that consists of the times, {τ1, τ2, . . . , τi < t}, of each previous
event. The conditional intensity function is then defined as

λ(t) = lim
δt→0

E[N(t, t + δt)|Ht]

δt
,

where δt represents a nonnegative interval of time.
A simple point process (28, 29), such as a Poisson process, may have a

constant conditional intensity over time:

λ(t) =µ.

In this simple Poisson process, the expected number of events is µ∆t over
time ∆t. However, biological processes are generally nonstationary—the
expected number of events changes as a function of time. This nonstation-
ary behavior comes from self-excitation, meaning an event makes future
events more likely for a period. This phenomenon can be caused by a
variety of mechanisms but is broadly referred to as positive feedback
(30, 31). The conditional intensity function can be altered to represent such
nonstationary behavior.

Hawkes processes (27, 32) model self-excitation with a conditional
intensity dependent on history:

λ(t) =µ(t) +
∑

i:τi<t

ν(t− τi),

where µ(t) represents an autonomous underlying rate of events, τi is the
time of event i∈Ht , and ν is a kernel function defining the association
between previous events and the conditional intensity.

In the multivariate case (13, 15, 33), where more than one set of events is
observed simultaneously, the conditional intensity of one dimension λj is a
function of the history in K dimensions:

λj(t) =µj(t) +
K∑

k=1

∑
i:τi<t

νjk(t− τi).

In this model, events in one variable may influence the conditional intensity
function of other variables through the kernel function νjk(·).

To model cells from a homogeneous population recorded on a two-
dimensional plane, we treat each cell as a different variable in a multivariate
point process. We assume that the autonomous component µj(t) is a posi-
tive constant µ> 0 over time and across cells. Based on observations from
prior work (6), the time kernel νjk is assumed to have a log-normal shape
with zero mean and variance bjk:

νjk(∆t) =
1

bjk∆t
√

2π
exp

(
−

(ln ∆t)2

2b2
jk

)
.

We assume a constant bjk = b for all j 6=k that represents intercell signal-
ing and bjk = bself for j = k that represents intracell excitation. Intuitively,
when a cell pulses, the conditional intensity of pulsing in its neighbors
increases until peaking at time exp(−b2), after which the conditional inten-
sity decreases back toward the baseline µ. Biologically, this captures the
expected delay between subsequent signaling events.

We make ajk a function of the distance between cells to capture the
spatial nature of cell–cell interactions:

ajk =


aself djk = 0

a 0< djk <ε

0 djk >ε,

where djk represents the distance between cells, ε is a radius inside which
signaling is possible, a is a positive constant that quantifies the strength of
cell–cell interactions, and aself is a positive constant for the magnitude of
intracell self-excitation.

For any individual cell j among K cells, the full CPP model is defined as

λj(t) =µ+
K∑

k=1

∑
i:τi<t

ajk

bjk(t− τi)
√

2π
exp

−
(

ln (t− τi)
2

2b2
jk

.
We can generalize the CPP model to account for multiple types of obser-
vations per cell, such as different fluorescence channels corresponding to
different components of a protein-signaling network.

In this case, each channel and protein–protein interaction has a different
set of model parameters. Given L channels capturing different proteins, and
letting ` represent a particular channel, there is the following:

• µ`> 0 for each channel, representing L parameters;
• a`,`′ > 0 for each channel pair, representing L2 parameters;
• aself ,`> 0 for each channel, representing L parameters;
• b`,`′ > 0 for each channel pair, representing L2 parameters; and
• bself ,`> 0 for each channel, representing L parameters.

Thus, for any channel `j for cell j, the conditional intensity according to
the CPP is

λ`j
(t) =µ` +

K∑
k=1

L∑
`

∑
i:τi<t

ajk`

bjk`(t− τi)
√

2π
e

− (ln (t−τi ))
2

2b2
jk`



ajk` =


aself ,` djk = 0

a`,` 0< djk <ε

0 djk >ε.

bjk` =

{
bself ,` djk = 0

b`,` djk > 0.

Relationship to Previous Models. A number of related models have been
used to address biological patterning in the past. Here, we focus chiefly
on the two-dimensional (2D) Ising lattice model and the Kuramoto oscil-
lator system, as these are the closest in context to the model that
we propose.

The 2D Ising model is used to describe a two-dimensional array of spins,
each of which can be in one of two discrete states (spin up or spin down).
This model has been implemented in creating discrete patterns in the study
of reaction–diffusion systems with coupled agents (34). The operator func-
tion that gives the energy of the system as a function of the spin states σ of
all of the constituent particles is called the Hamiltonian:

H(σ) =−µ
∑

j

hjσj −
∑
<i,j>

Ji,jσiσj ,

where the first term µ
∑

j hjσj is the effect of an external magnetic field h on
a particle’s spin state, weighted by µ, and the second term −

∑
<i,j> Ji,jσiσj

is the coupling term J between spins.
In our model, we can think of the coupling terms as similar to those

presented in our model; i.e., cells interact with other cells within a small
neighborhood around them. The magnetic-field term is usually held as
constant over the system and is similar to our term µ that represents the
probability of randomly pulsing in a cell-autonomous fashion. The Hamil-
tonian for the 2D Ising model is therefore similar in spirit to our model as
described.

However, as many studies have shown positive feedback effects that give
rise to self-excitation processes in cells, this model does not capture a reason-
able range of cell-signaling behavior. Additionally, upon examining sheets
of cells experiencing Ras/Erk pulses, we rarely see “stable states” of cells that
are constantly on or off, in contrast to the steady-state behaviors often seen
in Ising model simulations.

A second model used for coupled cells, and in particular cells capable of
oscillations, is the Kuramoto model (35). The Kuramoto model treats cells as
entities having an intrinsic oscillator “frequency” from a continuous range
of values. Cells are also coupled to some number N of adjacent cells, with a
“coupling constant” K:

dθi

dt
=µi +

K

N

N∑
j=1

sin(θj − θi).
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Here, the intrinsic frequency contribution µi describes the cell-intrinsic
change in oscillator phase θi . This is akin to our µ parameter. In this func-
tion, the contribution of adjacent cell states to the state of cell i is distinct
from the contribution of the autonomous behavior of cell i. Since the state
of each cell is in the space of oscillator frequencies, this parameter is forced
to oscillate through the sine of the difference in frequencies rather than
parameterizing a random process, making the effects of neighboring cells
periodic and deterministic instead of stochastic. This deterministic function
precludes transient signaling events from occurring. The Kuramoto model,
when simulated for long time courses, has been shown to relax into smooth
patterns of phases with clear boundaries between regions of opposite phase
(35); however, this is not the signaling pattern that we are trying to capture
in pulsatile cells.

While our CPP model incorporates some of the elements of these two
related models, it is more suited to capture the signaling patterns that we
observe in experimental data. In the design of the CPP model, we make
use of two terms that describe cell-autonomous and cell-to-cell signaling
contributions. In all three cases, cell-to-cell signaling terms are applied over
a small region around the cell in question, for example, in the eight-cell
neighborhood of a square in a 2D lattice. The range of states that a cell
can occupy differs among the three models. While the Ising model and our
CPP model capture binary states (on or off), cells in the Kuramoto oscillator
model may take values over a range of oscillator frequencies. These values,
however, have the downside of being modeled deterministically, without
allowing for the possibility of stochastic events.

The CPP model makes use of discrete states—more specifically, we model
the bursting state of a cell as being on or off with respect to a specific pro-
tein. This point process approach does not allow for different amplitudes
of signaling, but does take advantage of a framework that allows for phe-
nomena such as positive feedback that create self-excitatory pulse trains of
signaling pathway activation. Moreover, the structure of the signaling term
in the CPP model allows us to take into account the history of a cell’s signal-
ing state, which is not a part of the Ising or Kuramoto models and allows for
a more explicit treatment of self-excitatory processes in biological systems.

Both the Ising and Kuramoto models approach a “steady-state” pattern
of phases or spins as time goes to infinity. However, active behavior and
constant emergence of nonstationary fluctuations in a population limit the
applicability of these models to data. A stochastic, self-exciting, and history-
dependent model such as the CPP described here better captures these
behaviors.

Inference for the CPP. The conditional intensity λj(t) of the CPP has six
parameters to be inferred: µ, a, aself , b, bself , and ε. Biologically, Erk sig-
naling is regulated across cells by interactions between membrane proteins,
limiting the signal to neighboring cells. Since the (x, y) spatial coordinates
of each cell in our experimental data represent the cell center, we set ε to
60 pixels, corresponding to roughly 84 µm, unless otherwise stated. This
value was obtained through visual inspection of the raw imaging data. We
noticed that cells on average had five neighbors in direct contact with them,
forming a local neighborhood of cells around each cell. We then chose ε
such that the average cell had five neighbors. Of course, this parameter is
calibrated to the cell distributions observed in our experiments; in future
applications it will need to be adapted for images with different resolutions
and cell geometries.

We optimize the remaining parameters by maximizing the log-likelihood
of the observations. Given a history Ht with N events {τ1, τ2, . . . , τn} in time
interval [0, T], the log likelihood is (12)

L= log

∏N
i=1 λ(τi)

exp
∫ T

0 λ(t)dt
=

N∑
i=1

logλ(τi)−
∫ T

0
λ(t)dt.

We maximize this likelihood using automatic differentiation from PyTorch
(36). We use the PyTorch stochastic gradient descent (SGD) optimizer
(torch.optim.SGD) to minimize the negative log likelihood, with stopping
criteria when a local minimum has been reached (the negative log likelihood
at iteration i is greater than the negative log likelihood at iteration i− 1)
or when the absolute change in log likelihood between iterations is less
than 0.001%. We take simultaneous gradient steps for all of the parame-
ters with a learning rate equal to 1× 10−4, and we do not use momentum,
dampening, or weight decay. We initialize all parameters with a value of 1.

Confidence Interval Estimation. It has been demonstrated for both temporal
and spatiotemporal point processes that the covariance converges to the
inverse of the expected Fisher information matrix as T→∞ (37–39). We use

an existing estimator of the asymptotic covariance (38):

Σ̂ =

(
n∑

i=1

∆(si , ti)

λ(si , ti)

)−1

∆kj(s, t) =
λ̇k(s, t)λ̇j(s, t)

λ(s, t)
,

where i∈ [1, N] indexes each peak, (si , ti) is the likelihood of each peak
at time ti and location si , and λ̇k is the partial derivative of λi with
respect to k. Under the assumption of asymptotic normalcy, the 95%

confidence interval for a parameter k is 1.96
√

Σ̂kk. We implement an
estimator of the Fisher information and confidence intervals in PyTorch
using automatic differentiation to calculate λk for each parameter at
each peak.

Simulations. We simulate histories of peaks in one channel from the gener-
ative model to test whether inference accurately estimates the true param-
eters. We first generate 100 sets of {µ, a, aself , b, bself}. Each parameter is
selected from a uniform distribution with set minimums and maximums
(Table 3). The maximum distance of spatial interactions, ε, is kept constant
at 60 pixels, corresponding to roughly 84 µm.

For each parameter set, for every combination for cells
in [50, 75, 100, 125, 150, 175, 200] and number of peaks in
[100, 250, 500, 1,000, 2,500], a history is simulated. Cell positions are
drawn from a uniform distribution between (0, 0) and (xmax , ymax). To match
data collected from microscopy, xmax = ymax to create a square region. The
maximum coordinates as well as ε are set such that the expected number

of neighbors, ncells× ε2

x2
max

= 5, is similar to data from Goglia et al. (6). This

corresponds to an intercellular distance of approximately 30 to 50 µm. For
each history, we fit the model until convergence. We evaluate the goodness

of fit by calculating the NMSE, NMSEq = 1
N

∑N
n=1

(qn−q̂n )2

(qmax−qmin )2
, where q

represents some model parameter, between estimated and true parameter
values.

We compare the NMSE of CPP parameter estimates to a simple control
estimate for each parameter. The naive estimator of µ is the total number
of peaks across cells, P, divided by the number of cells, C, times maximum
time, T :

µ̂=
P

C× T
.

The control aself for a simulation is the average over each cell of the peaks in
a cell (Pc) per unit time minus the true autonomous pulsing rate µ, intuitively
the rate of excess peaks above µ in a cell:

ˆaself =
1

C

C∑
c=1

Pc

T
−µ.

The control a is similarly the average of excess peaks in each cell divided by
the number of neighbors (nc) a cell has:

â =
1

C

C∑
c=1

(
Pc

T
−µ
)
/nc.

We include only cells with neighbors for this calculation.
The control bself is calculated from the average time between two

sequential peaks from the same cell, across all pairs of same-cell sequen-
tial peaks in the simulation (∆̄t). If ∆̄t< 1, we consider the average the
mode of the log-normal distribution and estimate bself =

√
− log(∆̄t). If

∆̄t≥ 1, we consider the mean of the log-normal distribution and estimate
bself =

√
2 log(∆̄t). Similarly, the control b is calculated by taking the aver-

age time between every pair of peaks in cells that are considered neighbors
and transformed to b by the same rules as for bself .

Table 3. Parameter range for simulating a spatial point process

Parameter Minimum Maximum

µ 0.01 3
a 0.01 0.8
aself 0.01a 0.8a
b 0.01 5
bself 0.01b 1.5b
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Experimental Methods.
Cell culture and generation of transgenic cell lines. Dorsal epidermal
keratinocytes derived from CD1 mice and stably expressing a lentivirally
delivered histone H2B-RFP and ErkKTR-BFP (6) were cultured as described
previously (40). Briefly, keratinocytes were grown in complete low-calcium
(50 mM) growth media (“E media” supplemented with 15% serum and
0.05 mM Ca2+) in Nunclon flasks with filter caps (Thermo-Fisher) and were
maintained in a humidified incubator at 37 ◦C with 5% CO2. Cell pas-
sage number was kept below 30. Keratinocyte media was prepared as per
prior work (40).

To create pFos-GFP–expressing cells, dorsal epidermal keratinocytes were
derived from TARGATT mice containing a safe harbor locus with an attB
insertion site (Applied Stem Cell). A vector containing the minimal Fos pro-
moter driving a destabilized GFP and a CMV promoter driving a hygromycin
resistance gene was constructed using infusion cloning and flanked with
attP sites for insertion into the attB sites in TARGATT keratinocytes.
Keratinocytes were cotransfected with this reporter plasmid as well as a
plasmid encoding the phiC integrase driven by a CMV promoter, which,
when expressed, completed the integration of the reporter construct into
the safe harbor locus.

Cells were selected for expression with hygromycin (Sigma Aldrich).
Prior to imaging experiments, cells were transduced with lentiviral vectors
encoding a H2B-RFP marker, as well as with ErkKTR-iRFP.

Imaging experiments were performed in 96-well black-walled, 0.17-mm-
high performance glass-bottom plates (Cellvis). For plating cells, wells were
pretreated with a solution of 10 mg/mL bovine plasma fibronectin (Thermo
Fisher) solubilized in phosphate-buffered saline (PBS) to support cell adher-
ence. Two days before imaging, keratinocytes were seeded at approximately
96, 000 cells per well in 100 µL of low-calcium E media (in a 96-well plate).
Glass-bottom plates were briefly centrifuged at 800 rpm to ensure even plat-
ing distribution, and cells were allowed to adhere overnight. Twenty-four
hours before imaging, wells were washed two to three times with PBS to
remove nonadherent cells and were shifted to high-calcium (1.5 mM CaCl2)
complete E media to promote epithelial monolayer formation. For exper-
iments in growth factor-free (starvation) media, cells were washed once
with PBS and shifted to high-calcium P media (Dulbecco’s Modified Eagle
Medium [DMEM] containing only pH buffer, penicillin/streptomycin, and 1.5
mM CaCl2) 8 h before imaging. To prevent evaporation during time-lapse
imaging, a 50-mL layer of mineral oil was added to the top of each well
immediately before imaging.

Imaging was performed on a Nikon Eclipse Ti confocal microscope, with a
Yokogawa CSU-X1 spinning disk; a Prior Proscan III motorized stage; an Agi-
lent MLC 400B laser launch containing 405-, 488-, 561-, and 650-nm lasers;
and a cooled iXon DU897 EMCCD camera, and fitted with an environmental
chamber to ensure cells were kept at 37 ◦C and 5% CO2 during imaging. All
images were captured with a 20× air objective and were collected at inter-
vals of 3 min. Each frame was associated with a specific time point, with
accuracy to the thousandth of a minute.

For TAPI-1 experiments, drug was obtained from SelleckChem and diluted
to 10× the relevant concentrations in DMSO. A total of 11 µL of drug
was added to 100 µL of cells in 96-well plates immediately before imag-
ing. For drug treatment experiments (Fig. 4), drugs were added to a final
concentration of 2.5 µM.

For MDCK wound healing experiments, MDCK cells were maintained
in minimal essential medium (MEM) (ThermoFisher Scientific; 10370-021)
supplemented with 10% fetal bovine serum (FBS) (Sigma; 172012-500
ML), 1× Glutamax (ThermoFisher; 35050-061), and 1 mM sodium pyru-
vate (ThermoFisher; 11360070), in a 5% CO2 humidified incubator at
37 ◦C. For time-lapse imaging, MDCK cells were plated on 35-mm glass-
base dishes (Asahi Techno Glass). Before time-lapse imaging, the medium
was replaced with FluoroBrite (Invitrogen) supplemented with 5% FBS and
1× Glutamax.

For the generation of MDCK cell lines stably expressing the Forster Res-
onance Energy Transfer (FRET) biosensor, a PiggyBac transposon system was
used (5, 41). The pPBbsr-based FRET biosensor and pCMV-mPBase (neo-)
encoding the piggyBac transposase were cotransfected into MDCK cells
using an Amaxa nucleofector system (Lonza) at a ratio of 4:1. The cells were
selected with 10 mg/mL of blasticidin S for at least 10 d. Single-cell clones
expressing the biosensor were further isolated by limited dilution.

MDCK cells (4× 105 cells) were plated on 35-mm glass-based dishes. Two
days after seeding, confluent cells were scratched with a 200-µL pipette tip
to establish the wound. Just after scratching, the media and dislodged cells
were aspirated and replaced by FluoroBrite with 5% FBS and 1× Glutamax.
Immediately after replacing the media, the cells were imaged with an epi-
fluorescence wide-field microscope. The cells were imaged every 3 min for

12 h. DMSO, 100 nM Trametinib, or 10 nM TAPI-1 was added 2 h after
starting time-lapse imaging.

TAPI Dose Response. A number of publications on the phenomenon of spa-
tially coupled Ras/Erk pulses have noted that the matrix metalloprotease
inhibitor TAPI-1 is capable of reducing the extent of cell-to-cell signaling in
pulsatile activity (5, 21). The drug inhibits the cleavage and release of lig-
ands that activate the Ras/Erk pathway in adjacent cells, a process called
juxtacrine signaling (42). This body of work suggests that TAPI-1 specifically
inhibits intercellular, but not intracellular, signaling pulses.

Previous work on TAPI-1 as an inhibitor of spatial signaling in pulsatile
activity has been limited to analyses of approximately 5 to 10 cells at a
time and focuses on isolated instances of cells losing spatial coupling upon
TAPI-1 addition, rather than on a population-level response. We treated ker-
atinocytes with a range of TAPI-1 doses, at 5, 10, and 20 µM, and imaged
cells from the point of TAPI-1 exposure. An untreated well to which only the
solvent DMSO had been added was imaged as a vehicle control, since TAPI-1
was solubilized in DMSO prior to addition to the well. DMSO has not been
found to affect Ras/Erk activity dynamics (6). Imaged cells were incubated
in growth factor-free media, and cells were imaged every 3 min for 12 h
after the addition of TAPI-1. We noticed that cells went through a period
of deactivation after the addition of the drug after which pulsing resumed;
to remove this from our analysis, time series were truncated to the last 6 h
of imaging. Time-series measurements were converted to a series of peaks
for each cell as described previously (6). The model was fitted for each well
separately until convergence.

Estimating the Effects of Different Drugs on Keratinocyte Signaling. We next
fitted the model to data from prior work (6), in which keratinocytes were
treated with various RTKis, which target proteins upstream of endogenous
Erk activity. The data consist of 450 wells with 432 different drug treatments
and 18 DMSO vehicle controls (which contain no inhibitor) (SI Appendix,
Table 1). Imaged cells were incubated in growth factor-free media, and RTKi
was added 30 min prior to imaging. Cells were imaged every 3 min for 12 h
after addition of RTKi. Time-series measurements were converted into peaks
for each cell as described previously (6). The model was fitted to data from
each well separately until convergence. Due to differences in spatial orga-
nization across wells, the signaling radius ε was set independently for each
well such that each cell had on average five neighbors.

MDCK Wound Healing. Extensive prior work has been done on the associa-
tion between Ras/Erk pathway activity and cell proliferation and migration,
events that are critical for regeneration and wound healing. In light of this,
we demonstrated the use of live-cell Ras/Erk activity reporters in combina-
tion with our model to characterize the behavior of the Ras/Erk pathway
in response to an acute wounding event. Since a wound has a particular
spatial location relative to different cells, we used our model to quantify
signaling rates at various distances from the wound. To do this, we collected
data on a large sheet of MDCK cells, which are widely used for studies of
collective cell motility. Cells expressing the EKAREV Erk activity reporter (43)
were established using a piggyBac transposon system (41, 44) and sorted
to ensure uniform expression of the reporter construct. For wound healing
assay experiments, a wound was inflicted on cells by scratching a pipette
across a confluent layer of cells, and the sheet of cells was imaged every
3 min for 12 h. Nuclei were segmented, and Erk activity was measured for
each cell over time using the cell-tracking software TrackMate (6). Due to
cell movement over the course of the experiment, the field of cells was split
into 10 bins according to each cell’s distance from the wound edge along
the x axis at the start of the experiment, immediately after the wound
was inflicted. Our model was fitted until convergence to each bin, con-
sisting of the cells present in that spatial bin at the first time point, over
the duration of the wound healing process. As a control, we also binned
cells along the y axis, to ensure that these 10 bins result in identical esti-
mated signaling behaviors since these bins run parallel to the wound. Data
collected in the presence of the matrix metalloprotease inhibitor TAPI-1
and the MEK inhibitor Trametinib were also processed and analyzed in the
same manner.

Analyzing Behavior in Multiple Channels. As described earlier, the CPP model
makes it possible to examine couplings between separate channels, for
example, to analyze separate components of a signaling network. The
Ras/Erk pathway has a well-defined set of target genes, called IEGs, that
respond acutely and rapidly to Ras/Erk stimulation. We engineered mouse
keratinocytes to express a dGFP with a half-life of ∼1 h, under the control
of the minimal promoter of the IEG Fos. Using these cells, we could measure
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Erk-KTR as well as dGFP across 24 h in the same cells. Time-series measure-
ments were converted into a series of peaks for each channel in each cell
(6). CPP was fit run until convergence for each experiment to estimate the
µ, a, aself , b, and bself terms for each channel and cross-channel interaction.

Data Availability. All code is publicly available at the GitHub repos-
itory (https://github.com/architverma1/CPP) and videos and data have
been deposited in Dropbox (https://www.dropbox.com/sh/ctrb51chmkyfhlt/
AABH1A1jBFrVSahljz7VSbWaa?dl=0).
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